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1. INTRODUCTION
Detection of chemical vapor clouds has been a military concern
since the first use of chemical warfare. Growing concern for
environmental pollution has additionally driven development of
remote chemical vapor detectors.1 The FUR (forward looking
infrared) is an 8- to 12-rim thermal imager widely used in the
military for target acquisition and night vision. Chemical vapors
are spectrally active in the 8- to 12-iim region. There have been
several military programs to adapt the FLIR for chemical de-
tection.25 A navy FLIR has been deployed for chemical sensing.4
It is a standard common module FLIR modified with bandpass
spectral filters. Agent detection is made by the operator based
on the viewed scene.

Army requirements specify an autonomous detection system
not dependent on an operator for an alarm decision. To meet

Abstract. Detection of chemical vapors with a remote sensor is necessary
for both military defense and civilian pollution control. The thermal imager
is a natural instrument from which to build a chemical sensor since most
chemical vapors of interest are spectrally active in its operating wave-
length range. A system has been designed to place a chemical detection
capability as an adjunct function in a military thermal imager. An additional
detector array, which is spectrally filtered at the focal plane, is added to
the imager. Real-time autonomous detection and alarm is also required.
A detection system model by Warren, based on a Gaussian vapor con-
centration distribution is the basis for detection algorithms. Algorithms
recursive in both time and spectral frequency have been derived using
Kalman filter theory. Adaptive filtering is used for preprocessing clutter
rejection. Various components of the detection system have been tested
individually and an integrated system is now being fabricated.

that requirement, the Chemical Research, Development, and
Engineering Center (CRDEC), as part of its detection program,
is developing automatic image enhancement and detection al-
gorithms. A large body of work exists on target detection and
recognition in thermal images. But the targets of interest in this
work are tanks, trucks, aircraft, and buildings, all objects that
are generally modeled by such deterministic functions as shape
and size. Vapor clouds fit no fixed size, shape, or motion cat-
egories, but rather are modeled statistically based on their con-
centration. The detection problem becomes one of deciding on
the composite hypothesis of the image containing one or more
distributions of various chemical vapors versus the hypothesis
of the image containing only the clutter background. Addition-
ally, any detection algorithm must operate in real time, that
being the 1/30-s time period between the arrival of frames of
video. To meet this constraint, adaptive and recursive realiza-
tions are pursued, as are parallel and pipelined implementations.

Since more sensitive remote detection methods exist for a
dedicated chemical sensor, specifically JR interferometry6 and
laser spectroscopy,7 the strengths of the FUR-based approach
are the pictorial output and the large numbers of standard FURs
in use in the military. Because most tactical vehicles and aircraft
are fitted with an FUR, the space- and cost-economical way to
provide them with a remote chemical vapor sensing capability
would be through inclusion of that capability in the FUR. As
the next generation of FURs is developed, an adjunct chemical
vapor detection capability could be incorporated as an optional
configuration.

2. SENSOR CONCEPT

Turning an FUR into a spectrometer using narrow-bandpass
filters is a fairly simple process. Placing a filter in front of the
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ALTHOUSE, CHANG

exit aperture of the FUR, much as one does with a filter on a
camera, is the initial solution. To get more than one spectral
band requires the installation of a filter wheel or some mechanical
device to change filters . Ofcourse when the expense of IR filters
several centimeters in diameter becomes apparent, a quick move
is made to an internal focal point in the FUR. This was the
initial approach8 at CRDEC and it performed well for proof of
principle and initial trials. The stepper-motor-controlled filter
wheel could reliably switch filters every second, at its fastest.
Thus an entire set of four bands could be collected in about 10
5. Such a collection rate would be adequate for a fixed detector,
i.e. , nonmobile. To increase the data collection rate the next
iteration chemical sensing FLIR has a continuously spinning
filter wheel.8'9 This wheel has three different passbands and is
synchronized to the video frame rate of the FUR, thus yielding
a full set of spectral data every three frames or 1/10 s. A 0. 1-s
data collection time would be adequate in slowly moving ye-
hides. But this system still requires a fully dedicated FLIR and
would experience too much registration error for use in aircraft.

Dividing the 8- to 12-rim region into smaller regions in an
FLIR can be accomplished only with filters or a dispersion optic,
both of which have transmission losses. Imaging spectrometers
based on other principles exist but do not have the spatial res-
olution, compact size, or high-data-acquisition rate of the FLIR1°
In the case of filters, the passband may be as narrow as 0.5 im
and still yield an 80% peak transmission. Filters smaller in pass-
band quickly degrade in peak transmission. Although the filter
decreases the total energy incident on the detector, thus lowering
overall sensitivity, it has the advantage that an absorption feature
located within the filter passband comprises a much larger per-
centage of the energy incident on the detector. This yields a
better signal-to-noise ratio for the object with that absorption
feature. Figure 1 illustrates two filter passbands and the spectrum
of SF6, which has a spectral feature in the 10.6-m filter pass-
band.

There are two difficulties with using standard bandpass filters.
To divide the 8- to 12-pm band fully into 0.5-pm-wide segments
would require eight individual filters. These need to be me-
chanically rotated into the field of view sequentially to obtain
spectral data over the full range. There could alternatively be
eight to ten individually filtered detector arrays, each with a
different passband, and some method for scanning the field of
view over each detector array. Either system requires an optical
redesign of the FUR. A second difficulty is that the detector
now views a "hot" (system operating temperature) filter element

that is opaque over much of the sensitivity range of the detector.
Out-of-passband emission from the filter represents a noise source.
This may not be a problem if the scene background is signifi-
cantly warmer than the filter, but if a colder scene is viewed,
the warmer filter causes a considerable loss of sensitivity. An-
other concern specific to tactical military FUIRs is the require-
ment for excellent spatial resolution and good sensitivity for
target acquisition and recognition. The image quality and op-
erational availability of the tactical sensor cannot be compro-
mised in any way by the addition of further mission require-
ments, such as chemical detection or hardware, such as filters.
To address all of the necessary elements for adjunct chemical
detection in a harmonious way leaves little space for design
alternatives but does accommodate a solution.

3. HARDWARE DESCRIPTION
There is an arrangement that would permit the modified FLIR
to deliver both its standard image and a filtered image simul-
taneously, which we call CSFUIR for chemical sensing FUR.
The standard image would not be degraded in any way. The
filtered image would be designed to have the highest sensitivity
obtainable for the given detector array and filter bands. Use of
both the filtered and unfiltered images allows sufficient spectral
characterization of the viewed scene to detect and classify chem-
ical vapor clouds.

Figure 2 illustrates the focal plane filtering concept for a
tactical FLIR. There are two detector arrays, the standard tactical
one and a filtered one for chemical detection. The tactical array
is a standard common module detector array, which is a linear
array of semiconductor detector elements , generally 1 x 180,
1 x 120, or 1 x 60. The semiconductor material is HgCdTe for
8- to 12-pm detectors. Individual element sizes are on the order
of 4 x 10 — 2 by 6 x 10 2 mm. The signals produced on these
detector elements, as a scene is scanned over them, are elec-
tronically formed into a video image. Dual detector implemen-
tation in the common module FUR would require a redesign of
the Dewar assembly to accommodate additional electronic con-
nections.

The chemical sensing detector array would be identical in
construction techniques and material to the common module
(CM) array. It could have elements the same size as or larger
than the CM array. A larger detector element could be used
because it is more sensitive (less noisy) than the small one. The
trade-off is a loss of spatial resolution in the scene. This trade-
off has been found not to be a great concern in vapor cloud
sensing as vapor clouds tend to be large relative to the scene
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CHEMICAL VAPOR DETECTION WITH A MULTISPECTRAL THERMAL IMAGER

and have indistinct edges. High-spatial resolution is necessary
to resolve small objects or sharp edges in a scene.

A focal plane filter is mounted above the chemical detector
array within the cooled detector housing. It consists of a window
material, highly transmissive in the 8- to 12-rim band, coated
with patches of narrow bandpass filter coatings. The bandpass
filters are made by vapor depositing multiple layers of 1/4-wave-
length thickness dielectric material on the window substrate. A
wide variety of materials are used and the deposition process is
well understood. Adjacent filter patches have different pass-
bands. The number of distinct passbands required depends on
the complexity and number of chemical vapors being detected.
A passband should be associated with each strong absorption
feature and at least one band where there are no features for
baseline or background reference. The filter patches would be
arranged in order from 1 to n, repeating the order till the whole
detector array is covered, as shown in Fig. 3. The physical depth
of some of the passband coatings is on the order of the CM array
element dimensions. As such it may not be possible to put a
filter patch over each element, but the elements would be grouped;
say four elements under a patch, one element lost in the transition
region from one patch to the next, then four more, and so on,
as in Fig. 4. Any number of detector elements could be placed
under the filter such that the filter coating edge should not in-
terfere with the detector element acceptance angle. The smallest
groupings and hence the largest number of filter strips is desirable
to get the most complete multispectral coverage on the image.
A custom array with larger detectors could be matched to the
design constraints of the filter patches, as in Fig. 3. The filter
patch should be at least three times as wide as it is deep for
structural stability. A filter patch edge with no slope is preferable
as the transition will then occupy less space on the image plane.
Each filter element cannot have an edge of the filter patch within
its acceptance angle without experiencing serious focusing and
spectral errors. The filters should be mounted far enough from
the detector to avoid large noise contributions due to forward
scattering from small defects, which generally exist in the filter
patches. This scattering is called the Stierwalt 1—13

Since the filters are fabricated from 1/4-wavelength thickness
layers sequentially applied, any foreign material that adheres to
the filter during fabrication will result in a feature as shown in
Fig. 5. The bump created by the defect acts as a lens to focus
stray radiation onto the detector.

Commercial infrared filters generally contain some of these
defects. Because the filters are not generally mounted close to
the detector, the defects have no effect. Through careful pro-
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Fig. 5. Effect on filter coating layers due to a small particulate im-
purity.

cessing, we can greatly reduce the number of these defects and
thus eliminate the consequent noise of the Stierwalt effect. Fig-
ure 6 shows some data from Stierwalt that illustrate the
The curve shows transmittance of an out-of-passband frequency
for various half-cone acceptance angles of the detector. As we
move a filter with fixed aperture closer to the detector, the half-
cone angle increases, to a limit of 90 deg. Figure 7 illustrates
the change in half-cone angle with the change in offset distance
of the filter from the detector for a fixed aperture. Defects in
the filter coating not only scatter the object beam away from the
detector, thus reducing desired signal strength, but scatter and
focus stray radiation from outside the normal optical path and
out-of-band radiation onto the detector, thus increasing the noise
level. The larger the acceptance angle of the detector the more
pronounced the effect.

Some recent measurements with high-quality filters indicated
no Stierwalt effect up to a half-cone angle of 20 deg. Initial
designs for a focal-plane-filtered FLIR include half-cone angles
greater than 20 deg. As a result, great care is being taken to
ensure a clean atmosphere and pure materials for the ongoing
initial fabrication of these filters.
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Fig. 7. Change in half-cone angle with varying offset distances for
a fixed aperture 50% larger than the detector size. Units are nor-
malized to the dimension of the detector.

The image resulting from the described chemical sensing
detector would appear as in Fig. 8. Horizontal stripes of the
image would be filtered by different passbands in a repeating
order vertically down the image. A building or solid feature that
has a flat emission spectrum would show only minor changes
in appearance from stripe to stripe due to slightly unequal band-
pass functions. On the other hand, the vapor cloud, which has
distinct spectral properties, is strongly visible through filter 1,
weakly visible through filter 3, and not visible through filters 2
and 4. To an operator this would be a very poor quality image,
but to an image processor, its analysis poses no problem. Al-
though the system does not produce a complete set of spectral
data for each pixel, it does provide sufficient spectral analysis
of the scene. RS-170 standard video is composed of 480 hori-
zontal lines. Using the assumption of four filtered elements, the
next element lost to filter patch transition, four more filtered
elements, and so on, we would get 96 stripes in the image. The
next generation of tactical FURs will have 480-line-image data.
Given the 180-line CM display, we would get 36 stripes. With
four distinct passbands, that would yield six complete filter se-
quences. Based on tests with vapor clouds generated in a realistic
manner, the cloud quickly fills a significant portion of the image
if it is close enough to be detected. The FLIRs used in the study
had fields of view (FOV) on the order of 20 X 30 deg. Many
tactical FLIRs have a much smaller FOV and thus will have the
cloud fill a large portion of the FOV.

Another advantage of this system over the use of discrete
filters in a filter wheel or a continuously variable filter is its

speed of data acquisition. Most image-processing techniques
applicable to the cloud detection problem require good image
stability and registration over the sequence of images used for
analysis. Tactical FURs tend to be mounted on moving vehicles,
resulting in motion in the scene between frames. Correcting the
sensor motion is possible but computationally costly. In the new
design both filtered and unfiltered images are collected simul-
taneously at the system frame rate, generally 30 Hz. The actual
filtered pixel to corresponding unfiltered pixel collection time
difference will be on the order of 10 s due to the physical
separation of the detector arrays on the focal plane. For systems
with a stepped filter wheel or continuously variable filter that
same pixel collection time difference is on the order of seconds.
In the case of the continuously spinning filter wheel, even this
most ideal mechanically scanned system will have a pixel col-
lection time difference of at least 1/30 s. A i0 s time sepa-
ration will keep any scene blurring at subpixel resolution even
if the FUR is mounted in a high-speed aircraft. Thus this system
is compatible with present detection algorithms. The only im-
provement in the amount and usefulness of information collected
would come from the addition of more detector arrays , each
filtered at a single color, providing simultaneous multispectral
data for each pixel.

The block diagram in Fig. 9 shows the major system corn-
ponents. The FUR optics and tactical detector are as designed
for a standard CM FUR application. The CSFLIR detector and
tactical detector are integrated into a detector/cooler assembly
that includes a cryogenic pump. A data line from each detector
carries the signal to video electronics modules that transfer it to
RS-170 format. Both RS-170 lines feed a digital image proces-
sor. The image processor carries out the image enhancement
routines called in the detection algorithm. Prior to the actual
decision on the presence of a cloud, the detection algorithm
controls the processing and extraction of relevant information
contained in the available data.

Status of the chemical vapor detection operation is presented
to the system operator via an audio or visual means. The operator
could have manual selection of an appropriate display mode in
his image display screen. It may be a colored area, shaded area,
or perimeter overlay of the detected vapor cloud.
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4. SYSTEM MODEL
For a standard target detection problem in the FUR world, the
target is a hard object that has a relatively fixed dimension and
profile and produces a sharp-edged feature in the FLIR image.
Detection algorithms of many types have been devised to sep-
arate features with those characteristics from the scene back-
ground or 1415 Clutter itself is modeled as a first-order
Markov process and statistical methods have been devised for
its 16 Rauch et al. treated normal atmospheric clouds
as clutter and investigated methods to suppress 17 Minor
and Sklansky presented a method for detecting blobs, a class
into which clouds can fall, in JR images using edge detection
and other techniques designed for deterministically represented

18 We have found no other work in which clouds have
been treated as a target for a detection algorithm. Since vapor
clouds have certain properties that differ from clutter, even cloud
clutter, these properties can be the basis of a discrimination
technique.

In order to design a chemical agent detector for the multi-
spectral FUR, a sufficiently accurate system model is required.
It must encompass the background, signal from the vapor cloud,
and the sensor. The model described in this section is due to

arr19'20 We summarize briefly his derivation.
The extinction coefficient at wavelength X

€x(x,z) =€aX + pxC(x,z)

where x =(x,y) represents a two-dimensional spatial image, CaX
is an ambient atmospheric component, p. is the absorbtivity of
the vapor, and C(x,z) is the vapor concentration at location x
in the plane at z, normal to the instrument line of sight. A
Gaussian model for the vapor concentration is used:

I (x + y2 + (z—

C(x,z)= Co exp —
2o

with Co the peak concentration and z the cloud center. Since
an FUR, as a passive instrument, collects a signal integrated
over the total path length, the path-integrated concentration CL(x,z)
is

CL(x,z)= I C(x,z') dz'
Jo

F (x2+y2)l= VCOffC
exp

- 2 ] [Q(

Q(Z_zO)]

with Q(x) defined by

Q(x) = j exp(— t2/2) dt

zo

o.c

The detected signal power Pd is a convolution of P, the
power at the entrance aperture of the sensor, with R, the system
point spread function,

Pd(xj) =J P(O)R(x/f— 0) d20 + P(x) (4)

(2)

where x is the pixel location on the detector plane, 0 is the field
of view direction of the pixel, f is the effective focal length,
and P, is the additive detector noise uncorrelated with the signal.
Signal power Pd iS considered a random function since both
detector noise and the background temperature TB(0) are random
functions. Thus we can characterize Pd by its first- and second-
order moments. First we generalize Eq. (4) for a time (index k)
series of multispectral (index j) images,

Pd(x,tk) = J P5(O,tk)R(x/f— 0) d20 +P(x)

where the entrance aperture power is

Ps(O,tk) =A J IF(X)(B(T) + TA(X) exp[ — pXCL(0,tk)°L \

x {BX[TB(0,tk)} _B(T)})] dX

Additional parameters are

A = system optical constant

(5)

(6)

B(T) = Planck function at temperature T,

11
F(X) = bandpass function of the optical filter centered at

" ) wavelength X,T = temperature of the vapor cloud, and
TAOS.) = transmittance of the atmosphere at wavelength X.

The first and second moments of the signal power are

E[Pd(x,tk)]Pd(xi,tk) = f E[P(0,tk)]R(x/f— 0) d20

and

Apd(xj,tk,xj',tk')E{[Pdf(xj,tk)=Pd(xi,tk)llPd'(xi',tk')

— Pd'(x' ,tk')]}

= f[RXi/f_ 0)A3(0,tk;0ctk')
x R(x'/f— 0)] d20 d20'

+

(7)

(8)

(9)

(10)

where 1iN2, 1kM, and ljL.
Background or clutter temperature is assumed to be wide

(3"
sense stationary such that E[TB(0,tk)] =TB , aconstant. Although

'\ I
background scenes do not generally exhibit stationarity, War-
ren found that his algorithm performed well with field data.
Using these two moments, the signal model is a multivariate
Guassian density with signal power Pd expressed as an
L-dimensional random vector Pd = (Pd1, . . . , PdL)with probability
density function given by

1
Pd('d) =

(2i?MLIApdI)h/2

x exp{_[(Pd_)TAd1(Pd_)]} (11)
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Rc
OPt=

e=s—y (13)

An optimal filter minimizes the mean square of Eq. (13), i.e.,
E(e2) =E[(s — — y)], where E is the expectation taken with
respect to the joint random vector (s,y). The resulting optimal
weighting vector w0,t is a solution to the well-known Weiner-
Hopf equation:

w0=RD (14)

where R is the inverse of M =E[xxT], the covariance matrix
of x, and D =E[xs] is the cross covariance matrix of x and s.

We use a window (or search box) to implement adaptive
filtering to suppress the background clutter of FLIR images. The
window is moved and centered on all pixels in the image in turn
to calculate all local covanance matrices. The window consid-
ered here is an adaptive filter specified by a weighting vector
that puts weights on all pixels falling in the window. The details
of implementation can be found in Refs. 16, 17, and 23.

5.2. Linearly constrained MMSE adaptive filtering

Using the probability density function, Eq. (1 1), yields the fol- optimal filter is generally referred to as a Wiener-Hopf filter.
lowing likelihood ratio test: To be more specific, let e be the difference between the desired

signals 5 and y expressed by
HT

Pd(PdI'IT) P(Ho)
L(Pd)=(pIH) P(HT)
where H0 is the hypothesis that no vapor exists and H is the
hypothesis that a vapor cloud target is present.

The above likelihood ratio can be further reduced to the sum-
mation over the time and spectral dimensions of a function RkJ(Xj),
where Rk3(X1) is arrived at by taking the product of the Fourier
transform ofeach input image at each time increment and spectral
frequency with the inverse of the autocovariance at each spectral
frequency, the target filter function, and the sensor modulation
transfer function (MTF). Here Rk3(xj) is the result of the inverse
Fourier transform of the above product. Computing the inverse
of the autocovariance turned out to be the most time-consuming
process. When implemented in FORTRAN on a MicroVAX
computer, a 64-frame sequence of two spectral bands required
more than ½ h to process. The resulting images had a very
significant increase in signal-to-noise ratio and targets became
easy to detect 19

5. PREPROCESSING ALGORITHMS: BACKGROUND . .

CLUTTER SUPPRESSION An alternative approach to the unconstrained MMSE adaptive
filtering is a constrained MMSE adaptive filtering, which is

FLIR sensors image the thermal radiation emitted by a target. applied to the case where prior knowledge of the desired signal
The target presence is identified by a difference in temperature is not known. Due to the lack of s, a linear constraint vector
between the target and the immediate surroundings, i.e. , back- c must be imposed on the filter to constrain the filter output. Let
ground clutter and noise. As a result, the loss of the contrast the linear constraint be given by
between the target and the background can seriously degrade
the detectability of the target. In order to alleviate this problem, cTw =g . (15)
preprocessing is generally required prior to thresholding detec-
tion. Two preprocessing techniques are commonly used: The resulting constrained MMSE adapative filter is characterized
(1) adaptive image enhancement21 and (2) background suppres- by finding an optimal weighting vector a solution to the

16172223 Of particular interest in multispectral images is following equation:
the latter approach, which designs computationally efficient
adaptive filters of different types to remove or suppress highly min[wTMw] subject to cTw =g , (16)
structured background clutter. Since an adaptive filter has the W

capability of adapting unknown statistics and yields desired re-
sults over a wide range of environments, the study of adaptive where w0t can be solved and given by
filters for a variety of applications has received considerable
interest over the past years.24 . (17)

A widely used technique for adaptive multispectral filtering
is to use the minimum mean-square-error (MMSE) criterion to
achieve background clutter suppression, thus improving detect- Using the formulation (16), the adaptive filtering for FUR
ability of targets in FLIR 16l723 The adaptive filter to background suppression can be accomplished by choosing an
be designed consists of a set of scalar filter coefficients expressed appropriate linear constraint vector c and a gain g. For instance,
by a weighting vector w. The output of the filter, y is the weighted if we are interested in applying a 3 x 3 square array window to
sum of the input signal vector x given by an image while maintaining the target signal unchanged, the

gain g can be chosen to be unity and the constraint vector c
y = wTx , (12) chosen as a nine-dimensional vector with one in the central

component and zero in all other components. As a result, the
where T is the transpose and w is a weighting vector. An optimal pixel falling in the center of the window is retained unchanged.
adaptive filter is one minimizing the mean-square error between This formulation yields a constrained MMSE problem. The re-
the desired signal and the output y. sulting optimal filter is generally referred to as a minimum var-

Two approaches to finding an optimal weighting vector for iance distortionless response (MVDR) adaptive beamformer.
a desired MMSE adaptive multispectral filter are of interest.

5.3. Systolic array algorithms
5.1. Unconstrained MMSE adaptive filtering A major difficulty encountered in the approaches described in
FUR image background suppression can be cast as an uncon- Sec. S . 1 and 5 .2 is the computation of the optimal weighting
strained MMSE adaptive filter 161723 The resulting vector resulting from adaptive filters, which requires inverting
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a sample covariance matrix Mand intensive large-scale matrix!
vector multiplications. It is very costly if the filter is implemented
with direct matrix inversion. Although Wang23 developed a re-
cursive formula for generating the optimal weight vector to re-
duce computational load, full advantage of using matrix struc-
tures is not exploited.

Recently, the introduction of systolic array algorithms by
Kung and Leiserson26 revolutionized hardware design for car-
rying out matrix computations. With the help of systolic array
algorithms, matrix computations can be performed in parallel
and implemented in real-time processing. Basically, systolic ar-
ray algorithms are orthogonal triangularization processes using
QR-decomposition or Cholesky factorization, which allow us to
triangularize the sample covariance matrix so that the resulting
triangularized matrices can be inverted very efficiently by for-
ward and backward substitutions. Most importantly, the systolic
array algorithms are numerically stable, robust to finite arith-
metic precision, and can be designed to be parallel and pipelined,
thus greatly improving the implementation of the optimal filter
in real-time applications. The details of studying such a systolic
array approach are reported by Ref. 27.

6. REAL-TIME DETECTION ALGORITHMS

After preprocessing FUR images, a thresholding technique is
applied to detect the target signal. Many detection algorithms
have been developed for this purpose. Among them is the de-
tection algorithm suggested by rr19'20 particularly note-
worthy because it is recursive in time and has been shown to be
effective.

Rather than following Warren's algorithm, which is based
on a first-order autoregressive (AR) time series , Kalman filter
theory is used to develop a similar recursive detection algorithm
that covers Warren's algorithm as a special case and extends it
to include recursion in spectral frequency. The idea of using a
Kalman filter is natural since it can be recursively implemented
in real-time processing. Unlike Warren's work, this approach
uses a state equation to model background clutter of different
types. The background clutter in Warren's work was assumed
to be a first-order autoregressive model that corresponds to its
counterpart, a state equation in Kalman filtering. Using the Mar-
kov property induced by the AR model, Warren derived a re-
cursive formula for detectors described by a sequential likelihood
ratio test statistic. The essence of Kalman filter theory is to
introduce a new process , the innovations process suggested by
Kailath.28 Instead of directly dealing with an observation pro-
cess, an innovations process is generated for updating new in-
formation as time goes along. In other words, given an obser-
vation process it is not necessary to store all information available
up to the processing time because some information will be
useless and some will be repeatedly stored, which wastes stor-
age. A more efficient way to manage information is to store all
necessary information only once and dump unnecessary or un-
wanted information. The innovations process is developed based
on this need. In general, an observation process can be decom-
posed into two processes, a predicted process and an unpredicted
process. The predicted process contains all previous information
required for processing, and the unpredicted process presents
new information available at the processing time but not con-
tamed in the predicted process. Such an unpredicted process
resulting from the observation process is generally referred to
as an innovations process.

In most practical cases, the background Bk(X) at time frame
k can be characterized by a first-order AR model (or state equa-
tion) given by

Bk(U) = 'y(X)Bk_ 1(X) + flk(X) (18)

and the observation process specified by a spatial image, sampled
at time k is given by a random process Ik(X). A standard detection
problem can be described by a binary hypothesis-testing problem
given as follows. At time frame k,

H0: Ik(X) =Bk(X) +Nk(X)

versus

H1: Ik(X)=Tk(X)+Bk(X)+Nk(X)

(19)

(20)

where Tk(X) is the target of interest and both Nk(X) in Eqs. (19)
and (20) and flk(X) in Eq. (18) are noises.

Instead of using lk(X) and Bk(X), we can use two innovations
processes ak(X) and €k(X) to replace Ik(X)and Bk(X) in Eqs. (19)
and (20), respectively, where ak(X) and €k(X) are given by

ak(X)Ik(X) JkIk— 1(X)

€k(X)Bk(X) Bklk— 1(X)

(21)

(22)

and both IkIk— 1(X) and BkJk_ 1(X) are the estimates of Ik(X) and
Bk(X) at time k and are obtained based on previous information
up to time frame k— 1 . As a consequence, a detection problem
using a Kalman filter with the state model, Eq. (18), can be
derived and given by

H0: OLk(X)= Sk(O(X) + €k(X) +Nk(X)

versus

H1: ak(X)=SkIl(X)+€k(X)+Nk(X)

(23)

(24)

where SklO(X) = 0 for Ho, no target present, and SkIl(X)= Tk(X)
for H1 , target present.

As we can see from the above, the innovations process ak(X)
is a process containing the new ipformation availble in the
process Ik(X) at time k but not in Ikfk— 1(X), where Ikk— 1(X) is
the predicted process obtained from the past information up to
time k— 1 . Similarly, €k(X) is the innovations process repre-
senting the new information provided by the state model Bk(X)
at time k, but not available in the past. It is obtained by sub-
tracting the predicted process Bkfk— 1(X) from Bk(X) so that the
predicted information from B1(X) up to time i =0, . . . , k — 1 can
be removed. One of the most important features these two in-
novations processes possess is that they are white, i.e. , inde-
pendent processes. This is not true for the detection model of
Eqs. (1 8) through (20) considered by Warren. The property of
independency makes detection problems extremely easy to deal
with. The observation of such independency is easily justified.
Since an innovations process contains unpredicted new infor-
mation obtained at different time frames, the information ob-
tamed at a certain time frame must be independent of other time
frames due to the nature of unpredictability. The relationship
between the two innovations processes can be demonstrated by
the following equation:
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ak(X) =Bk(X) +Nk(X) —hklk- 1(X)

€k(X)+Nk(X)

Another great advantage of using a Kalman filter over War-
ren's approach is that the derived formula can be extended to
more general models for background clutter other than AR models.
The details of development of a Kalman-filter-based detection
algorithm can be found in the report by Chang.29

Although algorithms to date are designed for a three-dimen-
sional data set (pixel, time, spectral frequency), and the CSFLIR
data will be more of the form [spectral frequency (pixel), time],
separation of the spectral frequency function into its linear com-
ponents is really a bookkeeping process. Comparison of adjacent
components (really the horizontal stripes in the image) with the
associated unfiltered pixels provides a sufficiently complete set
of data due to the correlation between neighboring pixels.

7. CONCLUSIONS
Remotely detecting chemical vapors with a thermal imager has
proven to be a viable technique . Operational constraints drive
the degree of modification necessary to convert a standard FUR
into a chemical sensor. The developmental FLIR design pre-
sented here would yield a compact multipurpose electro-optical
system for obtaining multispectral imagery from a moving plat-
form. The multispectral data would be stationary and complete
enough for the planned detection algorithms. Hardware technical
issues, such as scattering from defects in the filters, exist but
have engineering solutions and require no new science.

Detection algorithm work accomplished to date suggests a
real-time solution to autonomous operation. Adaptive filtering
for clutter rejection and recursive realizations of thresholding
detectors must be further refined with realistic data and then
implemented on systolic array and parallel hardware. Addition-
ally, neural networks may perform well for circumstances where
little or no prior knowledge of the target exists.

The potential applications of this technique are not limited to
chemical vapor detection or remote sensing. Any scene that
contains hard to resolve or differentiate objects that also have
spectral features distinct from the background can be analyzed
by an imager such as the one described here. Some examples
are medical imaging or industrial process control. It is also
possible to extend the spectral range beyond the 8- to 12-m
region used in this description. The constraints come from the
limited spectral bands of optical components, but the use of all
or nearly all reflective optics is helpful. More than the two
detectors shown in this description may also be used to ade-
quately cover the spectral range needed.
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